

USE OF EARTHERN LINED PONDS IN SHRIMP CULTURE WITH BFT SYSTEM IN SOUTHERN BRAZIL

Geraldo Fóes, Carolina Costa, Vitalina Magalhaes, Julio Zemor, Charles Fróes, Gabriele Lara, Luis Poersch, Wilson Wasielesky.

Institute of Oceanography. Universidade Federal do Rio Grande (FURG), Brazil.

BRAZIL

Fifth largest country in area,8.5 million square km,200 million people,

8,000 kilometers of coastline

Brazil is an important producer of shrimps in South America; in 2012 the production was 80,000 tons in 20,000 ha.

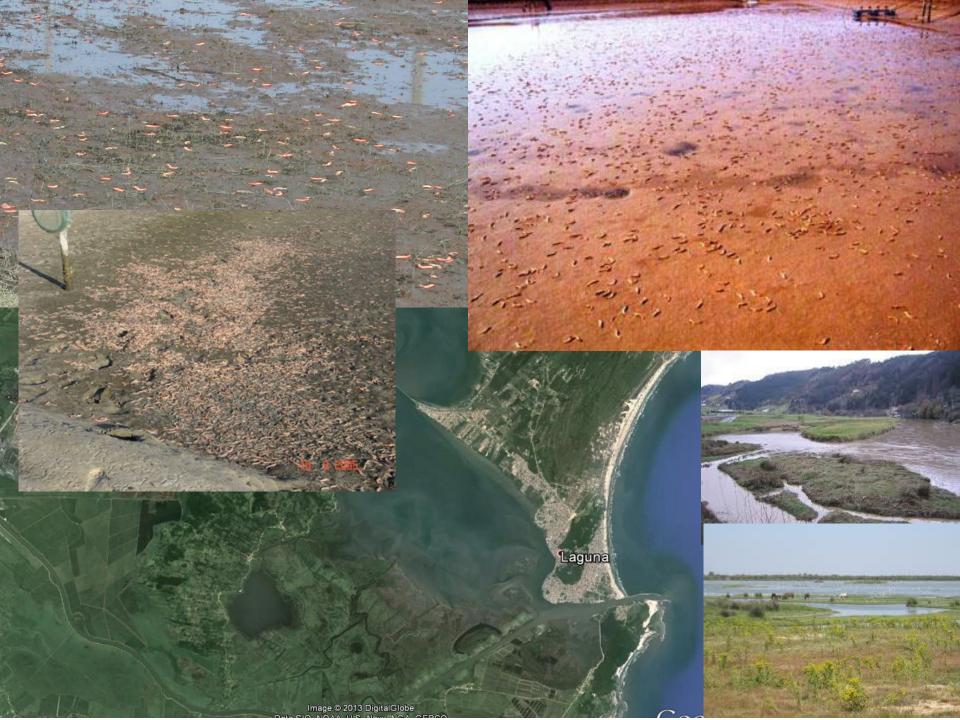
The production system is based in semi-intensive farms with ponds larger than 1.0 ha and stocking density from 10 to 25 shrimp/m².

Major producing region is located in latitudes between 0 and 15 °S.

Major producing region is located in latitudes

between 0 and 15 °S.

Port-of-Spain


Brazil is known as tropical country, with wonderful beaches,

but...

Recently, Brazilian producers have turned to intensive systems, however, there are few studies an facilities using intensive growout in lined ponds.

Uruguaiana, south of Brazil, 700 km far from the coast.

São José do Norte City, south of Brazil.

The Federal University of Rio Grande has vast experience in research with native species of penaeid shrimps (*Farfantepenaeus paulensis* and *F. brasiliensis*).

Has also experience in BFT system in raceways and ponds.

This presentation summarizes results from five intensive production studies (with BFT system) of Litopenaeus vannamei in earthen ponds in Southern Brazil.

Usually,

Use of nurseries and transfer to growout ponds.

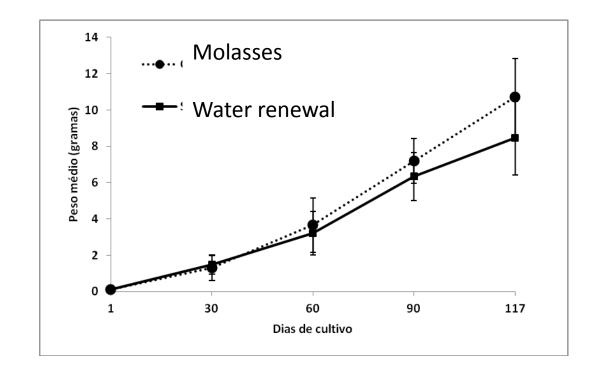
Several studies were performed:

- (1) Compare the application strategies of molasses and water exchange to reduce concentrations of nitrogen compounds in the ponds, the stocking density used was 85 shrimps m⁻² and the trial lasted 117 days;
- (2) Feasibility of using partial harvests at density of 75 shrimp m⁻². The study lasted 117 days;
- (3) Analyze two stocking densities (120 and 180 shrimp m⁻²) reared in BFT system in 105 days;
- (4) Shrimp performance of culture of *L. vannamei* (± 1.0 g) at two management strategies: in two consecutive short crops (70 days) or in one longer crop (150 days). The density employed was 50 shrimp m⁻²;
- (5) Use of different aeration types and positioning. The density was 100 shrimp m-2 and the study latest 110 days.

Raceway

Mixed system

Control


All experiments are chapters of masters and doctoral theses.

In all experiments, three ponds were used for each treatment.

The results of the first experiment demonstrated differences between treatments. The final weight was 10.7 g for the treatment molasses and 8.4 g on treatment with water renewal. (Average survival 95 %) and productivity was higher in the treatment molasses (8,772 kg ha-1)

Table 1. Zootechnical performance of *L. vannamei* in ponds with molasses fertilization or limited water exchange

Treatment	Final weight (g)	Survival F.C.R. (%)		Productivity (kg ha ⁻¹)	
Molasses	10.71 ± 2.1 ^a	96.2 ±4,3	1.01 ± 0,1	8,772 ± 26	
Water echange	8.46± 2.0 ^b	94.2 ± 3,0	1.22 ± 0,1	6,759 ± 41	

The results of the second experiment not demonstrated differences between treatments. The final weights ranged between 14.3 and 14.5g. (Survival 90 %) and maximal productivity was 9,241 kg ha-1.

Table 2. Zootechnical performance of *Litopenaeus vannamei* in experiment about partial harvest in earthen ponds with BFT systems.

Treatment	Final weight (g)	Survival (%)	F.C.R.	Productivity (kg ha ⁻¹)	
1 Harvest	14.29 ± 2.44	86.3 ± 2.4	1.21: 1	9,241	
3 Harvests	14.35 ± 2.14	88.9 ± 9.1	1.13: 1	8,713	
6 Harvests	14.55 ± 2.20	95.3 ± 3.5	1.05: 1	8,595	

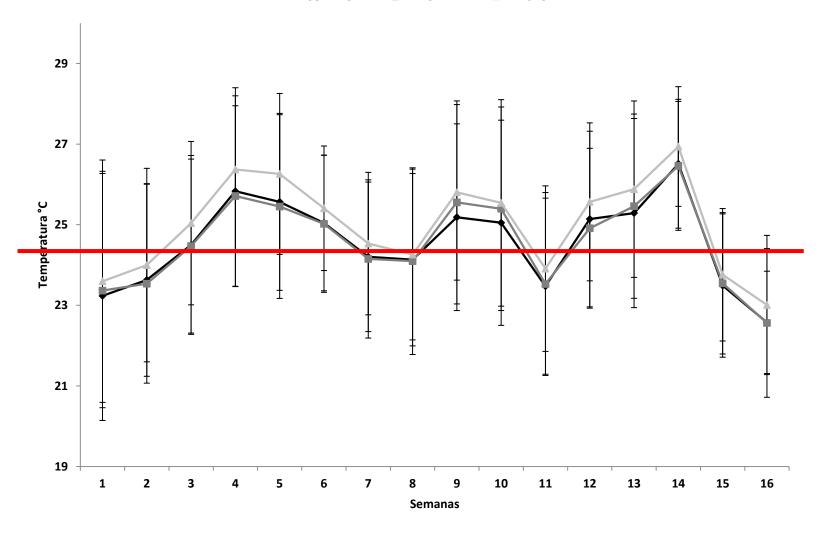
In the third experiment the average weights were 10.1g in both treatments (survival 98 % and 80 % respectively) and the productivity was 14,550 kg ha- in the treatment that we use 180 shrimp/m⁻²).

Table 3. Zootechnical performance in comparation between densitys of *L. vannamei* in ponds with BFT system.

Treatment	Final weight (g)	Survival (%)	F.C.R.	Productivity (kg ha ⁻¹)
120 m ⁻²	10.10 ± 0.36	98.3 ± 2.8	1.11 ± 0.18	12,665
180 m ⁻²	10.14 ± 1.40	79.7 ± 0.21	1.45 ± 0.38	14,554

In the fourth experiment, the final weight in longer crop was 23.3 g and productivity of 8,300 kg/ha (survival 61 %), while the two crops was 11.26 g and productivity of 9,600 kg/ha (survival 75 %).

Table 4. Desempenho zootécnico de juvenis de *L. vannamei*, em viveiros utilizando uma safra longa (140 dias) ou duas safras menores (70 dias cada).


Tratamentos	Peso fin. (g)	Sobrev. (%)	C.A.A.	Cresc. Sem.(g)	Prod.(kg ha ⁻¹)
01 Ciclo	10,34 ± 1,65	66,3 ± 3,5	1,39 ± 0,18	1,13	3700 ± 1000
02 Ciclo	12,19 ± 0,94	95,5 ± 5,2	0,98 ± 0,04	1,25	5900 ± 0300
Safra longa	23,39 ± 2,09	74,0 ± 7,7	1,42 ± 0,01	1,25	8300 ± 0033

1 safra: melhor preço e mercado diferenciado (safra da Lagoa dos Patos)

2 safras: safra precoce (pagamento de custeio) maior produtividade

In the fifth experiment, the raceway treatment results the highest final weight (15.14 g), however the survival and productivity were similar among treatments (85 % and 12,500 kg/ha).

Treatment	Initial weight (g)	Final weight (g)	F.C.R.	Weekly growth (g)	Productivity (kg ha ⁻¹⁾	Survival (%)
Paddle Wheell	1.15	14.25±2.83	1.51±0.11	0.82±0.31	12,473±832	88 ± 8
Raceway	1.15	15.14±2.75	1.52±0.05	0.87±0.30	12,425±377	82 ± 4
Mixed	1.15	14.23±2.54	1.49±0.11	0.82±0.30	12,713±994	90 ±10

The results demonstrate the viability of using lined ponds for intensive growout of *L. vannamei* in subtropical latitudes. We also demonstrate the feasibility of using microbial flocs system in lined ponds.

Acknowledgments

Pesca e Aquicultura

Ministério da

